

FACULTY OF ENGINEERING & TECHNOLOGY

ELECTRONICS & TELECOMMUNICATION ENGINEERING

Syllabus for

B.E. (E & TC Engineering) w.e.f. Academic Year 2015-16

FACULTY OF ENGINEERING & TECHNOLOGY

STRUCTURE OF B.E (Electronics & Telecommunication Engineering)

W.E.F 2015-16

B. E. (Electronics & Telecommunication Engineering) Semester- I

Sr.	Subject	Teaching Scheme				Examination Scheme				
No.	Subject	L	Tut	P	Total	Th.	TW	POE	OE	Total
1	Computer Communication	4		2	6	100	25	50		175
	Network									
2	VLSI Design	4		2	6	100	25	50		175
3	Satellite Communication	3	1	-	4	100	25			125
4	Coding Theory	3	1		4	100	25	i		125
5	Elective – I	4	P.	2	6	100	25			125
6	Seminar & Project			4	4		25		50	75
7	Vocational Training	2- X	cel (1	/e-V	9.2	25			25
	Total	18	2	10	30	500	175	100	50	825

Elective – I Advanced Telecommunication Network Image Processing Advance DSP.

B. E. (Electronics & Telecommunication Engineering) Semester- II

Sr.	Subject	Teaching Scheme				Examination Scheme					
No.	Subject	L	Tut	P	Total	Th.	TW	POE	OE	Total	
1	Broadband Communication	3	1		4	100	25		25	150	
2	Multimedia Communication Techniques	4	A Di	2	6	100	25		50	175	
3	Embedded Systems	4		2	6	100	25	ŀ	50	175	
4	Elective – II	4		2	6	100	25			125	
5	Project			8	8		100	100		200	
	Total			14	30	400	200	100	125	825	

Elective – II Wireless Sensor Network Pattern Recognition DSP Processors & Application

Note:

- Minimum strength of the students for Elective be 15.
- Term work assessment shall be a continuous process based on student's performance in class tests, assignments, homework, subject seminars, quizzes, laboratory books and their interaction and attendance for theory and lab sessions as applicable.

FACULTY OF ENGINEERING & TECHNOLOGY

Electronics & Telecommunication Engineering

PROGRAM EDUCATIONAL OBJECTIVES AND PROGRAM OUTCOMES FOR

Electronics & Telecommunication Engineering Program

STRUCTURE OF T.E (Electronics & Telecommunication Engineering) W.E.F 2016-17

FACULTY OF ENGINEERING & TECHNOLOGY

STRUCTURE OF T.E (Electronics & Telecommunication Engineering) W.E.F 2016-17

T. E. (Electronics & Telecommunication Engineering) Semester- I

Credit system structure of T.E. (Electronics & Telecommunication) Engineering W.E.F. 2016-17 Semester -I

Theory	ŀ	Irs. /V	Veek	Credits	Examination Scheme					
Course Name		Т	Р		ISE	E:		IC A	Tota I	
Electro Magnetic Engg. & Radiating System				4	30	7	0	25	125	
Principles of Digital Communication				4	30	7	0		100	
Software Engineering & Project Management System	3	1		3	30	7	0	25	125	
Digital Signal Processing	4			4	30	70			100	
Microprocessors	4			4	30	70			100	
Self-Learning (HSS)*						50			50	
Sub Total	18	1		19	150	400		50	600	
Laboratory										
						ES E				
						PO E	OΕ			
Electro Magnetic Engg. & Radiating System			2	1						
Principles of Digital Communication			2	1		50		25	75	
Digital Signal Processing			2	1		25		25	50	
Microprocessors			2	1		50		25	75	
Electronic Software Lab-II		1	2	2				25	25	
Sub Total		1		6		12	25	100	225	
Grand Total	18	2	10	25	150	52	25	150	825	

^{*} Self Learning (HSS)

Humanity and Social Science (HSS) of Semester – I will be common for Engineering and Technology.

FACULTY OF ENGINEERING & TECHNOLOGY

STRUCTURE OF T.E (Electronics & Telecommunication Engineering) W.E.F 2016-17

T. E. (Electronics & Telecommunication Engineering) Semester- II

Credit system structure of T.E. (Electronics & Telecommunication) Engineering W.E.F. 2016-17 Semester -II

Theory Course Name	Hrs. /Week			Credits		Examination Scheme				
	L	Т	Р	1	ISE	E		IC A	Tota I	
Radar & Microwave Engineering	4			4	30	7	0	25	125	
Microcontroller & Applications	4			4	30	7	0		100	
Electronics Applications & System Design	4			3	30	7	70		100	
Optical Communication	4			4	30	7	0		100	
Mobile Communication	3	1		4	30	7	0		100	
Self Learning*						50			50	
Sub Total	19	1		19	150	400		25	575	
Laboratory										
						ES E				
						POE	OE			
Radar & Microwave Engineering			2	1						
Microcontroller & Applications			2	1		50		25	75	
Electronics Applications & System Design			2	1			#50	25	75	
Optical Communication			2	1			25	25	50	
Mobile Communication				1				25	25	
Mini Project(Hard Ware)			2	1		-	-	25	25	
Sub Total	1		10	6		12	25	125	250	
Grand Total	19	1	10	25	150	52	25	150	825	

Solapur University, Solapur

T.E. (Electronics and Telecommunication Engineering) Semester-II 6. MINI PROJECT (HARDWARE)

Teaching Scheme: Examination Scheme: Practical: 2 Hr/Week Term-Work: 25 Marks

Course Objectives

- 1) To understand PCB designing processes and techniques.
- 2) To make students familiar with PCB artwork and fabrication.
- 3) To design, implement, analyze, and test Hardware/Software mini project.

Course Outcome

On completion of this course, students will be able to:

- 1) Understand and design PCB technique.
- 2) Understand and design PCB artwork and fabrication techniques.
- 3) Design, implement, analyze, and test Hardware mini project.

1. Maximum Group Size: Minimum 2 and maximum 3 students can form a group for the mini project.

2. Project Type: The selected mini project must be based on development of a prototype electronic system/product mandatorily having a hardware component with supporting software.

3. Execution steps for Mini Projects:

(i) Complete Paper work Design using datasheets

specifying: Selection criteria of the components

to be used. Specifications of system i/p and

desired o/p. Module based hardware design.

Test points at various stages in various modules

- (ii) The circuit should be simulated using any of the standard simulation software available (either complete circuit to be simulated, if possible or an appropriate part of the circuit can be simulated.)
- (iii) Algorithm and the flow chart of the software part must be defined.
- (iv) Result verification for hardware and testing the algorithms.
- (v) Comparison with the paper design to identify the discrepancies, if any. Justification of the same must be given.
- (vi) Verified circuit should be assembled and tested on breadboard or general purpose board.
- (vii) Simulation results and/or the snapshots indicating the current and voltage readings or detailing

the test point results at various stages must be preserved and included in the project report.

- (viii) Art work / layout of the circuit using standard layout tools.
- (ix) Assembling and testing of circuit on final PCB.
- (x) Design and fabrication of suitable enclosure and outside fittings such as switches, Buttons, knobs, meters, indicators, displays etc.
- (xi) Final testing of the circuit using the earlier defined test points.
- (xii) Preparing Bill of components and materials.
- (xiii) Drawing entire circuit diagram (Component level), outlining various blocks indicating test points, inputs and outputs at various stages on A3 graph sheet

4. Guidelines for the Seminar:

Seminar is based on the Mini Project topic.

The seminar shall consist of the Literature Survey, Market survey, Basic project work and Applications of Mini project.

Seminar Assessment shall be based on Innovative Idea, Presentation skill, depth of understanding, Applications, Future Scope and Individual Contribution.

Maximum three students can deliver a seminar on one topic.(Three students per group) Each group shall be given time of 20 mins for presentation and 5 mins for question answer session.

A certified copy of seminar/ project report shall be required to be presented to external examiner at the time of final examination.

